Die kognitive Dissonanz der KI

Zu meinen Lieblingsbeiträgen der Wikipedia gehört der Cognitive Bias Codex. Hierbei handelt es sich um eine Übersicht über die vielfältigen kognitiven Störungen bei uns Menschen. Die pure Anzahl und die Komplexität dieser Störungen führt uns unsere eigene Unzulänglichkeit nur zu gut vor Augen.

Diese Verzerrungen sind jetzt auch nicht „krankhaft“, sondern ganz normal – ein Zeichen unserer beschränkten Wahrnehmungs- und Verarbeitungsfähigkeit.

Der Titel dieses Beitrags leitet jetzt geflissentlich über zu der Frage, ob es solche Verzerrungen nicht auch in der KI gibt.

Eine erste Antwort finden wir bereits im Beitrag zu Belastbarkeit & Grenzen: KI basiert zum Einen auf Wahrscheinlichkeiten und nicht auf Wahrheiten oder Logik und zum Anderen ist die KI natürlich abhängig von dem ihr zur Verfügung gestellten Inhalten. Hier gelten noch immer die Grundprinzipen der Datenverarbeitung: Garbage in, garbage out.

Für ein aktuelles Projekt (eine Methoden-Übersicht) haben wir versucht die Attribute zur Beschreibung von Methoden mit Hilfe der KI vorzunehmen, bzw. unsere eigenen Überlegungen dazu mittels KI zu validieren. Die KI Ergebnisse dazu hielten leider unseren Erwartungen nicht stand, angefangen davon, dass uns die KI zu anderen Attributen überreden wollte und deutlich von den Vorgaben abgewichen ist, fand sie auch generell toll, was immer wir ihr gegeben haben, womit wir beim Thema kognitive Verzerrungen wären. Es gab also eindeutig eine Bestätigungstendenz.

Wenn man darüber nachdenkt ist das Ergebnis auch gar nicht so überraschend, denn was wir ihr als Input gegeben, ist natürlich gegenüber ihren anderen Ressourcen hochprior, nur anstatt unsere eigene Modellbildung damit kritisch auf den Prüfstand zu stellen, hat uns die KI dann lobend auf die Schulter geklopft. Gut fürs Ego, schlecht für das Ergebnis.

Wenn man jetzt noch berücksichtigt, das durch die Wahrscheinlichkeitsbetrachtung letztlich auch nur bestehende Lösungen einbezogen werden können, dann wird schnell klar, dass die KI zwar eine Umsetzungsmaschine, aber ein Innovationszwerg sein muss.

Unser Versuch der Methodenbeschreibung ist nur ein einfaches Beispiel. Die Fragen am Rande des Cognitive Bias Codex lassen sich aber auch auf die KI übertragen. Was tun, wenn…

  • …wir mit zuvielen Informationen konfrontiert sind.
  • …es an Bedeutung und Kontext fehlt.
  • …wir schnell handeln müssen.
  • …die Aktualität und „Haltbarkeit“ von Informationen nicht ganz klar ist.

Letztere bringt auch das Thema „Vergessen“ auf. Wenn Informationen veralten, dann sollten wir sie vielleicht sogar vergessen und sie nicht in unsere Antworten einbeziehen, aber es heißt doch so schön: Das Internet vergisst nicht. Nicht nur die KI muss noch viel lernen, sondern auch wir im Umgang mit der KI.

Anmerkung & Quellen:
Cognitive Bias Codex (Wiki Commons)
Das Logo im Beitrag ist „geklaut“ in der englischen Wikipedia und wurde selbst von der KI (Dall-E) kreiert, mehr dazu auf der dazu gehörigen Wiki-Commons-Seite von Wikipedia (inkl. dem zugrundeliegenden Prompt).
Ein erster Beitrag zur KI auf schlossBlog findet sich hier: Jetzt auch noch KI…
Und dann ging es um Belastbarkeit & Grenzen und um Anwendungsfälle.



bernhardschloss.de